Dual-beam Holographic Deflection Measurement

A holographic method is established to measure full-field deflection

with variable sensitivity

by J.A. Gilbert and J.W. Herrick

ABSTRACT—Deflection is recorded at different sensitivilies
over a limited portion of the holographic range by introducing
equal but opposite phase changes into the holograms created
by a dual-beam illumination. The technique does not require a
partially reflecling mirror, patterns can be optically filtered for
better fringe contrast and in-plane displacement can be
recorded without making any modifications in the experimental
setup. Results obtained from two- and three-dimensional
surfaces agree well with theory and verify analytical arguments
presented throughout the paper

List of Symbols

d = displacement vector
d, = inner diameter of pipe
d, = outer diameter of pipe
A

€; = unit vector in direction of propagation
n; = fringe order number
r,0,Z = polar coordinates

C = center of rotation
D = distance between model and photographic
plate
E = clastic modulus
L = length of pipe
M, = applied torque
P = object point
R = radius of disk
U, V, W = scalar components of displacement
X,Y,Z = cartesian coordinates
Z. = distance between photographic plate and
rotation center
« = sensitivity angle
3 = angle of rotation
6 = fringe spacing
f, = reference-beam angle
A = wavelength
v = Poisson’s ratio
¢ = radial coordinate
¢, = induced phase change

Introduction

Full-field holographic deflection patterns are usually
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recorded by illuminating and viewing a specimen along
the same direction with the aid of a partially reflecting
mirror. When holograms of the undeformed and de-
formed specimen are superimposed, a holographic inter-
ferogram is recorded in which fringes become apparent
upon reconstruction. Points lying on the same fringe
have experienced equal changes in optical path while
points on two adjacent fringes have moved through a
distance of one-half a wavelength relative to one another
in the direction of illumination/observation.

This paper presents a holographic method which
records deflection with different sensitivities over a
limited portion of the holographic range. The technique
does not require a partially reflecting mirror, patterns
can be optically filtered for better fringe contrast and
in-plane displacement can be recorded without making
any modifications in the experimental setup.

Analysis

As shown in Fig. 1, a model is illuminated with two
beams contained in the X,Z plane. The two beams,
characterized by unit vectors €, and ¢,, make equal angles
« with respect to the viewing direction given by the unit
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Fig. 1—Displacement analysis of a point
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vector €,. A photographic plate, situated along the ob-
servation direction, is used to capture these wavefronts
with a reference beam at an angle 6, with respect to the
plate normal.

When points on the object surface are displaced through
a vector displacement d between photographic recordings,
two holograms are generated which display interference
fringes given by’

(& ~€)ed = n,\ (1)
and (8, —=%,)+d = n,\ 2)

where n, and n, are fringe order numbers and \ is the
wavelength of the laser used during the recordings. Dis-
placement is projected along sensitivity vectors (€, — €,)
and (€, —%;) in egs (1) and (2), respectively. The two sets
of holographic fringes are referred to as component
patterns.

The component patterns created by a dual-beam
illumination have been superimposed to form a moiré
pattern which corresponds to the difference in phase
between them. Displacement is projected normal to the
angle bisector of the illuminating beams, parallel to the
plane formed by their respective propagation vectors. In
general, the moiré¢ is enhanced by densifying the com-
ponent patterns either by rotating the object,> the
photographic plate,’ the illuminating beams* or a sand-
wich hologram.® All of these procedures are used (o
introduce “common phase changes into each of the
component patterns.

Phase changes of equal magnitude and opposite sign
have been introduced into each component pattern (o
project displacement along the angle bisector of the dual-
beam illumination. This was accomplished by rotating the
illumination in opposite directions between exposures.*
The latter is not always feasible; for example, when fiber
optics are used to measure deformation in a remote region
of a structure.® In this case, the illumination is difficult
to adjust once the fiber optics have been inserted into
the system.

This paper describes an alternate method which records
displacement along the angle bisector of a dual-beam
illumination. Sensitivity can be varied over a limited
portion of the holographic range. As shown in Fig. 1, the
test surface is observed along the angle bisector of a dual-
beam illumination. Equal but opposite phase changes are
then introduced into the component patterns by moving
the photographic plate between exposures.

Moving the photographic plate between exposures
causes a visible interference pattern.’ When the plate is
rotated around any axis parallel to the plate, straight-line
fringes with fringe spacing,

A
0= —m———— 3
B(1 —cos 0) S
localize in space at a distance,
Zs
D=—"—+ 4
-1 —cos Ok @

from the plate. In egs (3) and (4), 8 is the rotation
initiated to the plate measured in radians, 6, is the angle
measured to a collimated reference wavefront from the
plate normal, and Z. is the distance from the hologram
to the rotation center. Once 6, is established, Z is chosen
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in accordance with eq (4) to localize the interference
pattern very close to the object surface. The fringe pattern
which results from plate motion is called an initial
pattern.

Equation (3) also holds true for image plane holographic
recordings where D is nearly zero. In this case, the plate is
rotated about an axis passing through the plane of the
plate for proper localization.

Consider a hologram recorded with the configuration
shown in Fig. 1. The plate is mounted so that rotation
can be carried out around an axis parallel to the plane of
the plate which passes through a rotation center whose
position can be varied along €,.

If the plate is rotated between exposures, both the
reference and object wavefronts are modulated and an
additional phase change ¢, is experienced by each model
point. In general, ¢, is a function of all three displace-
ment components U, V, W. This phase change is equivalent
to a pure rigid body rotation of the model around a
rotation axis passing through a point which lies at a
distance D, measured along Z, normal to the plate.’
When one component pattern, say that given by eq (2),
is recorded with an equal but opposite rotation to that
used to modulate the pattern given by eq (1), the ex-
pressions for the new component patterns become,

(8, —&)ed+0,(U,V, W) = n,\ (5)
and (8, —8)ed—0o,(U,V, W) = n,\ 6)

Equations (5) and (6) can be formulated in terms of
U, V, Wand the sensitivity angle « as,

Usina—(1+cosa)W+ o, (U, V, W) =n\ (7)
and
—Usina—({+cos )W o, (U, V,W) = n\ (8)

When these patterns are viewed simultaneously along
€, they optically superimpose to form a moiré. The
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Fig. 2—Experimental setup



latter can be expressed parametrically as either the sum or
difference of eqs (7) and (8). The angular orientation of
the component patterns determines which family of moiré
is predominate.®

Under some circumstances, difficulties may arise in the
interpretation of the moiré-fringe pattern. The latter may
have a tendency to fade oul in areas where there are
large variations of fringe spacing in the component
patterns. In more severe cases, the angular orientation
of the component patterns causes their superposition to
form one moiré family, say the sum, which abruptly
changes to form the other family; namely, the difference.

The induced phase change caused by plate rotation has
a direct bearing on both the fringe spacing and orien-
tation in each component pattern. Ordinarily their
difference is apparent; however, when the phase change
due to plate rotation exceeds” that caused by model
deformation, the moiré pattern corresponding to the sum
becomes predominate. Adding egs (7) and (8) one obtains,

200 +cos )W = —(n;+ ny)h = ng\ )

where 1, is the moiré-fringe order number of the sum.
Equation (9) represents the projection of d along €, and
is commonly referred to as the deflection when dealing
with a flat surface in the X,Y plane. Sensitivity can be
varied by changing «. The lower bound, corresponding
o a = 90 deg, can only be achieved for flat surfaces,
since this condition describes grazing incidence. Each
fringe in the moiré pattern is a multiple of X/2, which is
analogous to the result predicted for full-field holographic
deflection measurement carried out by illuminating and
viewing a specimen along the same direction with the aid
of a partially reflecting mirror. The upper bound corres-
ponds to « = 0 deg. In this case, points on adjacent

Fig. 3—Deflection pattern for a centrally loaded circularly
clamped plate with a center deflection of 7.62 x 107 cm,
recorded with 3 = 11.25 arc minutes

fringes move through X\/4 with respect to one another.
The following section documents experiments carried
out on two- and three-dimensional surfaces with the
proposed technique. Each test is performed with illumina-
tions at different sensitivity angles to fully verify eq (9).

Experimental

The method outlined above is first applied to a two-
dimensional surface. A centrally loaded circularly clamped
plate is constructed by sandwiching a 12.7-cm-diam, 0.32-
cm-thick Plexiglas disk between a retaining plate and a
steel frame. The inner lip of the retaining plate creates an
effective 7.62-cm-diam fixed-support condition. The test
surface is painted flat white; deflection is initiated at the
center of the plate with a micrometer located behind the
model surface. A 0.79-cm-diam steel ball provides the
contact point.

Displacement along the line of sight is recorded with
the experimental setup shown in Fig. 2. The test surface
is located in the XY plane. A front-surface mirror,
positioned parallel to Z, allows two collimated beams to
be constructed from a single source so that experiments
can be carried out using a lower powered laser than would
ordinarily be necessary il two separate object beams
were used to illuminate the specimen. The illuminations,
which are contained in the X,Z plane, make equal angles,
a = 45 deg, with respect to the Z axis. A shutter system
is also included in the object-beam wavefront to allow the
test surface to be separately illuminated with either beam.

The photographic plate is positioned so that rotation
can be carried out around an axis parallel to X, passing
through C. The parameters 6., Z. and D are chosen in
accordance with eq (4) to localize the initial pattern on the
object surface as 6, = 30 deg, Z. = 5.44 cm and D =
40.64 cm, respectively.

An initial exposure is taken of the unloaded model with
both beams illuminating the model. The load is applied to
the specimen and the photographic plate is rotated through
a counterclockwise angle 3. This modified state is re-
corded with illumination from the right. The plate is
rotated through 28 clockwise and a third exposure is
taken with illumination from the left. The plate is then
developed and reconstructed.

Figure 3 shows the superposition of the component
patterns when the center of the centrally loaded circularly
clamped plate moves along Z, through a deflection of
7.62 x 107 cm. The pattern is recorded with an induced
phase change corresponding to 3 = 11.25 arc minutes.
The sum of the component patterns is visible only in
those areas where the ratio of the induced phase (o that
caused by model deformation is sufficient to produce the
corresponding moiré. This occurs - close to the fixed
boundary where the deformation is small. Figure 4, on the
other hand, corresponds to a center deflection of 1.40 x
10™* cm, recorded with a plate rotation of 8 = 15 arc
minutes. In this case, the moiré is visible over the entire
test surface. The ratio of the induced phase change to
that caused by deformation in Fig. 4 is 7.3 times that
in Fig. 3.

Theoretically, the equal but opposite rotations given to
the photographic plate between exposures result in two
identical fringe patterns. The manner in which they super-
impose with the deformation, however, depends on the
direction of rotation. Any difference in the orientation
and/or the spacing of the fringes in the initial pattern
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Fig. 4—Deflection pattern for a centrally loaded circularly
clamped plate with a center deflection of 1.40 x 107 cm,
recorded with 3 = 15 arc minutes

induced in each of the component patterns produces a
mismatch when they are superimposed. This will shift the
displacement pattern. A careful examination of the fringe
pattern shown in Fig. 4 reveals that, contrary to theory,
the displacement fringes are not concentric. The filtered
pattern is shown in Fig. 5 in an effort to explore this

Fig. 5—Filtered pattern of the deflection pattern for a
centrally loaded circularly clamped plate
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apparent error.

Recall that the induced phase change was introduced by
rotating the photographic plate about a horizontal axis;
the latter corresponds to an axis parallel to X, passing
through C on Fig. 2. Theoretically, this results in parallel,
horizontal fringes in the absence of model deformation.?
Introducing a different number of fringes into each com-
ponent pattern by opposite but unequal rotations of the
photographic plate would cause horizontal mismatch
fringes. If this fringe pattern were superimposed with that
due to the deformation of the centrally loaded circularly
clamped plate, the moiré would be shifted in the vertical
direction. A horizontal shift would occur for a rotational
mismatch.

Assuming that the centrally loaded circularly clamped
plate has been properly constrained, the mismatch has
shifted the displacement pattern in a direction at 45 deg
measured clockwise with respect to the horizontal. This
indicates that there was a difference in both spacing and
orientation of the fringes introduced into each com-
ponent pattern.

Figure 6 shows the displacement plotted parallel and
perpendicular to the shift. The mismatch does not effect
displacement measured perpendicular to the shift; con-
sequently, the mismatch can be determined for displace-
ment measured along the shift by subtracting the fringe
order numbers in the two experimental plots. The mismatch
is included in the figure. The displacement along the shift
can now be corrected by subtracting off the displacement
due to the mismatch. The comparison of these results
with theory® indicates that the method is accurate provided
that equal but opposite phase changes are introduced into
the component patterns.

A thin-walled, PVC pipe is used as a three-dimen-
sional test surface. As shown in Fig. 7, the pipe is rigidly
fixed at end X/L = 0 and a torque, M,, is applied at
X/L = 1.0, to produce a state of pure torsion. Geo-
metrical parameters, material properties and coordinate
axes are included in the figure.

The setup shown in Fig. 2, and the procedure outlined
for the centrally loaded, circularly clamped plate are
used to record the displacement pattern for the pipe;
however, in this test, illuminations are contained in the
Y,Z plane, make angles of 30 deg with respect to the Z
axis and illuminate the region of interest from 0.4 <
X/L = 0.6. Figure 8 shows the component patterns and
their moiré recorded with 8 = 11.25 arc minutes. No
information is obtained for |2 Y/d,| = 0.43, where d, is
the outer diameter of the pipe. In this region, only a
single beam illuminates the pipe and no moiré is formed.
The displacement along Z is given by'®

32doM (1 + »)

W = m (X Ccos 0) (10)

where E, v and d, are the Young’s modulus, Poisson’s
ratio and the inner diameter of the pipe, respectively.

Equating eqs (9) and (10) and solving for the fringe
order number,

—64doM (1 + v)(1 + cos a)
Arlde — diE

Ny = (X cos @) (11)

Using A = 5145 x 10®* cm, o = 30 deg and the informa-
tion included in Fig. 7, n, is plotted along X/L = 0.5
and compared to the experimental result obtained from
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Fig. 6—Displacement, mismatch and theoretical curves for a centrally loaded circularly clamped plate

Fig. 8. This comparison is shown in Fig. 9. dimensional surfaces; two tests were performed with
Discussion and Conclusion illuminations‘at dit‘t'crcm'sensilivily angles.

In each of the experiments used to demonstrate the

Equation (9) has been verified for two- and three- method, the collimated illuminations given by €, and e,
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* Fig. 7—A pipe subjected to
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L=0.4128 m M =0.054 Nm
dg=0.0485 m E =27.58x10° kPa
d,=0.0406 m v=0.37
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are common over the full-field; however, there is a small
change in €, for each model point since one is observing
the model from a finite distance. This results in a slight
error, since the sensitivity vectors along which displace-
ment is projected are not all parallel to the line of sight.
This error tan be minimized by making D larger; or, can
be eliminated by using an image-plane technique with
telecentric viewing.'' Even with this inherent error, results
indicate that the method is accurate and that the tech-
nique can be applied to both flat and curved surfaces.

It is impossible to predict the lower bound on induced
rotation necessary to produce a visible moiré without
knowing the spacing and orientation of the displacement
fringes due to actual deformation in each component
pattern. A general guideline for practical implementation
of the technique, however, is to ‘make the phase change
caused by the motion of the photographic plate as large
as possible, compared to that due to model deformation.
This criterion is best, provided that plate motion can be
carefully controlled to avoid mismatch. On the other
hand, a known mismatch could be introduced to densify
the moir€ pattern to facilitate strain analysis. It would be
necessary to subtract the induced strain due to the mis-
match from derivatives taken from the displacement
pattern. This technique is currently under investigation.

One major advantage of the method developed herein
is that displacement can also be measured normal to the
line of sight without making any modifications in the

Fig. 8—Deflection pattern for a pipe subjected
to pure torsion
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setup shown in Fig. 2. This procedure is described in
detail in Ref. 3.
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