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Abstract. The work described in this report represents a successful dem-
onstration of a hybrid approach to the analysis of structural deformation.
Mathematical modeling was incorporated into the process of reducing
data from a digital correlation analysis of experimentally obtained speckle
data. These experimental data were collected by both directly imaging the
speckled surface of the test subject onto a vidicon camera/digitizer system
and transmitting this image to the camera via a flexible coherent fiber
optic image bundle. Considerable savings of time and resources can be
realized through applications of this hybrid approach in which the
strengths of the theoretical and experimental procedures complement
each other beautifully. The final hybrid results compare very favorably
with values obtained by both a theoretical mathematical (finite-element)
analysis and an independent experimental (high frequency moire) study,
demonstrating the accuracy and reliability of this hybrid procedure. Final-
ly, the successful use of flexible optical fiber elements for data access
demonstrates the potential for application of speckle hybrid techniques to
the study of remote or otherwise inaccessible regions of a prototype
structure.

Subject terms: speckle; speckle metrology; hybrid stress analysis; finite-element
analysis; digital image correlation; fiber optic applications.
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1. INTRODUCTION

This paper describes the successful demonstration of a hybrid
stress analysis technique using speckle metrology designed to
achieve a more efficient, more accurate solution by combin-
ing experimental and analytical techniques. A critical region
of a prototype structure is modeled using finite elements, and
experimental data taken from the correlation of digitized
speckle patterns obtained from the boundaries of the same
region on the prototype during loading are used to specify
values at the “nodes” of the finite-element model. Potentially,
this approach can enhance efficiency by (1) significantly re-
ducing computational requirements and (2) providing a much
closer match to the actual boundary conditions as defined by
loading the prototype structure. Moreover, such hybrid tech-
niques may yield solutions where neither experimental nor
analytical methods alone will succeed.

The present work parallels a comparable successful effort
to demonstrate a different hybrid technique using the moire
method as described in an earlier report.! However, the pres-
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ent speckle hybrid technique has major advantages over the
earlier moire hybrid technique in that (1) it does not require
the preparation and attachment of a precision ultrahigh pitch
grating to the surface of the prototype test subject, (2) it
facilitates remote access via fiber optic imaging, (3) its corre-
lation analysis is computer-based, and (4) it may readily be
automated to feed data directly into the finite-element routine
for rapid analysis.

2. THE HYBRID APPROACH

The idea of a hybrid approach to structural analysis is not
new.?™* Although there is a long history of development for
engineering studies based on mathematical models (finite-
difference equations, boundary value integrals, finite-element
methods) and on experimentally determined data (gaging,
optical or acoustical metrology, etc.), each method has well-
known limitations. Mathematical studies depend on the cor-
respondence between some abstract model subjected to spec-
ified boundary conditions and a real structure subjected to
complex interacting forces. A detailed model quickly be-
comes very large and mathematically complex, placing large
burdens on the computational and financial resources of the
designer. Also, the validity of the results depends on how
well boundary conditions have been incorporated into the
model. On the other hand, direct experimental methods of
analysis often yield only a few data values, measured at
isolated points on the structure. Acquiring these data in cer-
tain critical regions may be difficult or dangerous (e.g., com-
plex structures, inaccessible locations, hazardous environ-
ments). In such cases, fiber optics might be used to provide
safe, effective access for appropriate data acquisition.

The hybrid method takes advantage of the strengths of the
mathematical/theoretical and experimental approaches, while
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minimizing their weaknesses. Basically, the idea is to drasti-
cally reduce the required finite-element mesh (to improve
efficiency and reduce computation time) and to incorporate
measured values instead of generalized boundary conditions
(to improve accuracy), while simultancously gaining the
capacity to study relatively inaccessible regions of a structure
through the use of fiber optic components.

3. SPECKLE METROLOGY

Surface motion studies using speckle photography (as op-
posed to speckle interferometry®) usually fall into one of two
basic categories: (1) optical methods that generate displace-
ment-related fringe patterns® and (2) photoelectronic-digital
methods that use numerical correlation techniques.” The
former approach has the advantage of simplicity, but unavoid-
able-primary* and secondary” speckle size considerations
(e.g., to be detectable the surface displacement must be
greater than the characteristic speckle size) limit its range and
resolution. Furthermore, double-exposure photographic tech-
niques must be employed, limiting measurement to displace-
ments between two successive states. On the other hand,
digitized speckle techniques use photoelectronic recording,
digitization, and computer-based numerical correlation,
which obviate the need for photographic work and optical
processing. In addition, these methods have a greater inherent
range of measurement because many speckle size considera-
tions are relaxed; e.g., correlations may be obtained for the
measurement of displacements both larger and smaller than
the characteristic speckle size. Even more important may be
the capacity of digital correlation techniques to operate effec-
tively over a wide range of speckle sizes ranging from a
significant fraction of the field of view down to the resolution
limit of the system. In remote applications, these limits may
be defined by the size and resolution characteristics of the
fiber optic imaging bundle.” In the present study these various
considerations prompted the use of a whole field artificial or
“white light” speckle technique® whose data could be trans-
mitted reliably by a relatively low resolution image bundle
and correlated without a significant loss of either resolution or
range.

Finally, with photoelectronic recording a sequence of many
speckle fields may be digitized and correlated in succession to
provide a displacement history (or velocity field) if desired,
even for highly unstcady'motion‘

4. THE TESTS

To compare the speckle hybrid method with a purely nu-
merical approach, tests were carried out on a simple linear
elastic structure using both methods. A notched beam to be
loaded in symmetric three-point bending was both machined
of PSM-1 photoelastic plastic (see Fig. 1) and modeled with a
finite-element mesh [see Fig. 2(a)]. By virtue of the sym-
metry of the problem, it was necessary to analyze only half
the beam. Appropriate boundary conditions, together with the
mesh, were input to the finite-element program (ANSYS)
running on a mainframe -computer. The ANSYS program
produced a listing of the displacements at all the nodal points

*Primary speckle refers to the speckle associated with the surface whose
motion is to be measured. -

‘tSecondary speckle refers to the speckle noise that appears in the diffraction
halo as a result of the coherent illumination used to interrogate the speckle-
gram.
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Fig. 1. Notched beam used for comparing standard finite-element
method with hybrid approach to analysis.
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Fig. 2. (a) Finite-element mesh used to model the notched beam of
Fig. 1. Because of symmetry, only half the beam has to be modeled.
(b) Subregion of mesh around the notch in the beam. Numbers
indicate locations (nodes) chosen for displacement analysis using
speckle correlation technique.

and a plot of the maximum shear stress intensity values
throughout the entire half-model. This plot is shown in Fig. 3,
where the stress intensity contours represent multiples of 3.45
MPa (500 psi). Assuming that trust is placed in the mesh used
to model the notched beam and that the specified boundary
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Fig. 3. Stress intensity plot for the notched beam under load. Values
are calculated by standard finite-element method. Stress intensity
contours represent multiples of 3.45 MPa (500 psi).

Fig. 4. Experimental setup for direct imaging of speckled surface of
beams onto vidicon camera/digitizer: (1) tungsten lamp, (2) incoher-
ent fiber optic bundle (illuminator), (3) test surface with “artificial”
speckle, (4) vidicon camera.

conditions accurately describe the loadings, the problem may
be considered solved, yielding theoretical elastic displace-
ments and stresses throughout the beam. ’

For the experimental part of the hybrid test, the surface of
the PSM-1 prototype beam was spray-painted white and spat-
tered with black paint to produce a suitable random pattern of
artificial speckle. It was then mounted in a loading frame
where it could be loaded and deformed as desired. To sim-
ulate an idealized three-point bending, three metal rollers
were used to provide trartsverse “line” loadings, one on top of
the beam directly above the notch and the other two on the
bottom, one positioned 25.4 mm on each side of the notch.
Loading was accomplished by raising the lower rollers 254
pm to bend the beam upward around the top roller, which
immobilized the center of the top of the beam above the
notch. The speckled surface was then illuminated with the
light from a tungsten filament lamp transmitted through a
small flexible optical fiber bundle (see Fig. 4). The reflected
light was imaged into a vidicon camera (Hamamatsu C1000),
and the collected image was digitized into a 256 X 256 pixel
array, with intensity levels distributed over an 8-bit gray
scale. ' '

A subset of the finite-element mesh that enclosed the criti-
cal notched area of the beam was chosen for numerical ana-
lysis. Nine locations around this subregion, corresponding to
the nodal points on the boundary of this minimized finite-
element mesh or subset, were selected [see Fig. 2(b)], and
displacements at these locations were determined experimen-

TABLE I. Horizontal and vertical displacement values u and v for
selected locations (nodes) on the beam from speckle data obtained
by direct imaging of the test surface onto the vidicon (see Fig. 4).
These were calculated by speckle correlation and inserted into the
finite-element program to yield the hybrid results shown in Fig. 5(b).
Displacement values u’ and v’ were obtained by remote imaging
through a fiber optic bundle (see Fig. 6) and yielded the hybrid
results shown in Fig. 5(c).

Node u (mm) v (mm) u’ (mm) v' (mm)
1 0.055 0.058 0.050 0.053
2 0.042 0.057 0.037 0.057
3 0.023 0.054 0.028 0.051
4 0.008 0.057 0.014 0.058
5 0.001 0.055 —0.001 0.057
6 0.000 0.037 0.000 0.040
7 0.000 0.021 0.002 0.027
8 0.000 0.011 0.002 0.018
9 —0.001 0.008 —0.001 0.014

tally. The full-field speckle patterns obtained from this region
before and after deformation of the PSM-1 beam were digi-
tized and submitted to a correlation routine. The routine used
in this study performed a two-dimensional correlation and
assumed that the displacements were homogeneous over small
areas. No corrections were made for possible rotation or
warping. If these types of displacement are anticipated, more
complex routines, such as those developed by Peters et al.,”
may be used. However, this routine did incorporate Lagrang-
ian weighting functions to allow interpolation of subpixel
displacements. The horizontal and vertical displacements u
and v, respectively, measured at the nine selected locations
are given in columns 2 and 3 of Table I.

These nodal displacement values and the subregion mesh
were submitted to the ANSYS program for analysis. For
comparison, an enlarged view of the maximum shear stress
intensity contours determined by a standard finite-element
approach and given earlier as the lower left corner of Fig. 3 is
shown in Fig. 5(a) for the subregion of interest. The ANSYS
output plot of maximum shear stress intensity values deter-
mined by the hybrid approach using the experimentally mea-
sured nodal displacements for the same region is shown in
Fig. 5(b). As before, the contours represent multiples of 3.45
MPa (500 psi). The close agreement between the two plots for
the region around the notch is obvious, and the largest max-
imum shear stress intensity at the root of the notch was calcu-
lated by ANSYS as 25.0 MPa (3617 psi) using the standard
finite-element analysis and as 25.4 MPa (3679 psi) using the
hybrid approach, a difference of only 2%.

A third test was conducted in which a coherent optical fiber
bundle was used to transmit images of the illuminated speck-
led test surface to the vidicon camera (see Fig. 6). The entire
speckle analysis procedure was repeated, and the resulting
displacement values u’ and v’ measured at the selected nodal
points are given in columns 4 and 5 of Table I. Minor differ-
ences between the u and v displacements given in columns 2
and 3 of Table I and those given in columns 4 and 5 are not
unexpected, since the model was fully unloaded and reloaded
for the latter test. These new values were used as input to the
ANSYS program, and the resulting shear stress plot is shown
in Fig. 5(c). The same comments may be made for these
results as were made for those obtained with the “direct
image” analysis; minor irregularities are evident around the
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Fig. 5. Stress intensity plots:(a) for subregion around notch. This is an enlargement of part of Fig. 3. Contours represent multiples of 3.45 MPa

(500 psi); (b) for subregion around notch as calculated by ANSYS using nine measured val

of nodal displ nent. Contours are labeled as in

(a); (c) for subregion around notch from data obtained through coherent fiber optic bundle. Contours are labeled as in (a).

Fig. 6. Experimental setup with speckle images transmitted to
vidicon camera/digitizer through coherent fiber optic image bundle:
(1) tungsten lamp, (2) incoherent fiber optic bundle (illuminator), (3)
test surface with “artificial” speckle, (4) vidicon camera, (5) coherent
fiber optic bundle, (6) imaging lens.

boundary (due to the variations in the nodal input values), but
in the critical neighborhood of the notch, agreement with the
two previously obtained plots [Figs. 5(a) and 5(b)] is excel-
lent. The hybrid approach gave a maximum stress intensity
value of 24.7 MPa (3573 psi) at the notch root, which again is
within 2% of the value obtained from the standard finite-
element analysis.

Finally, it should be noted that had the experimental load-
ings been less “ideal,” e.g., had the rollers been made of
plastic instead of metal and the beam been made of metal
instead of plastic, then as the load was increased, the rollers
would have deformed plastically, the “line” loadings would
have been lost, and the finite-element analysis would have
become increasingly inaccurate. On the other hand, neither
hybrid technique would be in any way adversely affected by
this development, and each could be expected to provide just
as accurate an evaluation of the conditions at the root of the
notch as under those (perhaps more realistic) loading condi-
tions as was demonstrated here for the more “idealized” load-
ing conditions.

5. SUMMARY

The excellent agreement between the results obtained from a
standard finite-element analysis and the results obtained from
a hybrid approach demonstrates the validity of the latter,
while the much simpler mesh and the incorporation of actual
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data values demonstrate its potential to simplify computations
and increase confidence in the results.

Although a full finite-element analysis has advantages for
the initial design of a structure and allows the specification of
overall system parameters, it is cumbersome and expensive
when the task is to analyze local anomalies in an existing
structure. In this latter case, the hybrid approach can be a
much simpler and more cost-effective way to solve problems
or to study the response of prototypes.

In this project, the field data on displacement were obtained
using artificial speckle techniques.® These data were acquired
both by direct imaging and by image transmission through a
flexible optical fiber bundle, demonstrating capacity for re-
mote access. The excellent results obtained here and in an
earlier study' using a moire-based hybrid analysis demon-
strate that the power of the hybrid approach is not in the
particular measurement technique utilized, but in the incor-
poration of experimental data values obtained from a test of
the actual structure (or a model of the structure) into a finite-
element routine.

Finally, it should be noted that in these tests it was not
possible to make a wholly experimental evaluation of the
strain field at the root of the notch because, as in many real
situations, the displacements in the critical region were too
small to measure with the accuracy needed to yield reliable
displacement gradients. Nevertheless, experimental displace-
ment measurements made at enough points around the bound-
ary of the region of interest gave values sufficient to accu-
rately determine the strain distribution around the notch root
by a hybrid numerical (finite-element) procedure. On the
other hand, for many real problems in stress analysis where
similar conditions preclude purely experimental evaluation,
complicated loadings, geometry, or local material conditions
may also render purely numerical modeling methods ineffec-
tive or excessively difficult. If, however, suitable experi-
mental data can be acquired, many such nearly untractable
problems might be readily analyzed by hybrid techniques.
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