A Holographic-moiré Technique to Obtain Separate
Patterns for Components of Displacement

A combination of dual-beam holographic interferometry and moiré,

provide a practical solution to the problem of the optical separation

of displacement components. Results show that the technique

makes holographic interferometry very useful for stress analysis -

by C. A. Sciammarella and J. A. Gilbert

ABSTRACT—A symmetrical double-beam illumination is
used in conjunction with a fictitious fringe system to obtain
a moiré pattern which represents the projection of the dis-
placement vector into a single plane, The fictitious system
of fringes is generated by a rotation of the photographic
plate. This additional degree of freedom makes it possible to
optically superimpose holograms, to apply spatial filtering
techniques, and to control fringe localization. The method
is applicable for displacement determination throughout the
entire holographic range. A disk subjected to diametral com-
pression is used to demonstrate that displacements and
strains on the order of magnitude of those found in real
engineering problems can be determined very accurately.

List of Symbols

d = displacement vector

d]:: scalar component of the displacement
f(u) = function of the fictitious displacement

g = sensitivity vector

1,k = basis of unit vectors

rJ,lC_1',]£‘g,I£‘2' — propagation vectors
nnpnp’ = normal vectors
ni,ne,ng = fringe-order numbers
w,» = scalar components of the displace-
ment

x,y,z = coordinates of reference system
2. = z coordinate of the center of rotation
C = rotation axis
D = distance from the localization surface
to the hologram; diameter of the disk
D' = distance between the object and the
holographic plate
ﬁ = rotation vector
P = point on object surface
= P’ = point on localization surface
P,,Py,Ps = points on the photographic plate
E = position vector from the center of ro-
tation to a point on the photographic
plate
a — angle between the illumination beams
and the normal to the object surface
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8,8x8y = angles of rotation of the photographic
plate
8,8’ = phase changes
81,9 = fringe spacing
er,ey = components of strain
# = angle between observation or illumi-
nation directions and the normal to
the object surface
§p — angle between a scattered ray and
the normal to the photographic plate
#r — angle between the reference beam and
the normal to the photographic plate
A8p,A6p’,A0r = changes in angle
A = wavelength of the laser light
¢,¢1,42.6r = phase relations

Introduction

A fundamental property of holographic interferom-
etry, when applied to diffusing surfaces, is to pro-
vide displacement information along a sensitivity

vector.
In Fig. 1, a point P moves through a displacement

P

Fig. 1—Determination of the displacement at
a point by means of holographic
interferometry
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given by the vector d. The illumination direction is
characterized by theﬁpropagation vector ky; the ob-
servation direction by ks. The resulting holographic-
fringe pattern is indicative of a phase change, 9.
which gives information about one projected com-
ponent of the displacement. That is,
b:(fcjﬁl:‘&)'d:g-,q (1)

where g is the sensitivity vector.
In a limited number of problems, it is possible
to use a single object beam to cbtain holographic

Fig. 2—Holographic determination of
in-plane displacement. (a) Double
observation; (b) double illumination

218 | June 1976

patterns which correspond to only one component of
the displacement throughout the entire field of ob-
servation.!.?

Ennos describes a technique to obtain the in-plane
component of the displacement vector of a point.?
The method consists of making simultaneous ex-
posures of two holographic plates before and after
an object is loaded. If a point on the object is viewed
obliquely through these two holograms at equal
angles to the surface normal as shown in Fig. 2(a),

one can write =
6= (k1 —kp) -d (2)
and =Nk el ]
8 = (ks — kz) - d 3)

Subtracting eq (3) from eq (2) one obtains
b— 8= (ky’— ko) - d (4)

where (k," — k2) is a vector lying on the surface of
the object. Ennos suggests a solution of eq (4) by
computing the difference of the orders in the two
patterns. .
Utilizing the fact that the point of observation can
be interchanged with the point of illumination, But-
ters* and Boone’ replaced the double observation by
a dual illumination. In this case,- Fig. 2(b), eq (4)
becomes
8—8 = (e — ki) - d (5)

The sensitivity vector becomes independent of the
direction of observation. i

In both cases, the information can be retrieved by
superimposing the two obtained patterns and observ-
ing the resulting moiré pattern.®

The practical realization of this idea has been
hindered by the difficulty in obtaining systems of
fringes capable of generating good-quality moiré
patterns.

Fig. 3—In-plane displacement
with dual illumination. (a), (b)
Single-beam patterns; (c)
superposition of (a) and (b); (d)
same as (c) but with an initial
pattern; (e), (f) diffraction
pattern of (d) and filtered image



Basic Theory of the Phase Subtraction by Means
of the Moiré Method

The dual-illumination approach is used throughout
this paper. This method has a distinct advantage over
the double-observation method. That is, with this
technique it is possible to optically superimpose the
component patterns before reconstruction.

Localization problems or fringe characteristics,
such as spacing, gradient and orientation, often make
the optical subtraction or moiré of the component
patterns difficult or impossible to observe. The ideal
solution to the problem of optically subtracting the
two patterns is to have an initial pattern with high
fringe density. If a dual illumination is used, this
initial pattern must satisfy the following prerequi-
sites:

(a) The fringe loci and pitch of the initial pattern
must be the same for both illuminating beams. (b)
the plane of localization of the pattern must be co-
incident with the surface of the model, (¢) the initial
pattern must be produced by simple means, which do
not require the displacement of the model.

If the above conditions are satisfied, the phase of
the initial pattern is given by the equation

¢ (F(w)) = nh (6)

where f(u) is a function of the fictitious initial dis-
placement.

When the model is loaded, each illumination adds a
different contribution to the initial phase and two
patterns result which are characterized by
é1 [f(u) + (k1 — k) -dl =n1 2 (n

¢ [f(u) + (ki —k2) - d] =nad (8)
I~ Ea™ e

The moiré pattern produced by the two patterns is
given by the equation

#1 [f(u) + (’7:1 —ji-:) 'E.] — ¢2 [f(w)
+ (k' — ko) - d) = (n1 —m2) . (9)

Vo -
or

¢R[(k1—£ﬂ') ’@ = (10)

The moiré pattern displays the in-plane compo-
nent of the displacement vector; however, there is an
important difference between the latter and a moiré
pattern produced by a line grating printed on the
surface of the model. The moiré method is insensitive
to translations parallel to the plane of the grating.
It can be easily checked that this is not the case for
the moiré pattern generated by the two families of
holographic fringes. A translation generates two
systems of parallel fringes with different pitch, ca-
pable of producing a moiré pattern.

The need for the introduction of a fictitious dis-
placement, common to each component pattern, is
evident in Fig. 3. A disk under diametral compression
was illuminated in order to isolate the displacement
parallel to the direction of loading. Figures 3(a) and
3(b) show the holograms corresponding to each il-
lumination beam.

Figure 3(c¢) shows the simultaneous reconstruc-
tion of both holograms. Although the moiré pattern is
inherent in this combination. it could not be observed
directly or extracted bv optical-filtering techniques.

On the other hand, Fig. 3(d) shows the case where

an initial pattern has been added to each of the com-
ponent patterns. The moiré is readily observed and
optical-filtering techniques can be applied. Figure
3(e) shows the diffraction pattern produced by the
two interfering systems of fringes and the order uti-
lized to filter the resulting moiré pattern. Figure
3(f) shows the moiré pattern after filtering.

The observed pattern is independent of the orienta-
tion of the initial system of fringes. Figure 4 shows
two half patterns generated with orthogonal systems
of initial fringes. The two patterns match perfccily.

Generation of the Initial Patterns

The successful implementation of the described
technique requires the generation of initial patterns
satisfying the prerequisites previously indicated.
There are many methods which can be used to gen-

Fig. 4—The displacement component parallel to the
direction of loading of a disk subjected to diametral
compression—Left and right halfs are generated
with vertical and horizontal initial patterns

. LASER 4. MODEL
2 BEAM SPLITTER 5 PHOTOGRAPHIC PLATE
3. MIRROR

Fig. 5—Experimental setup and coordinate system
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erate initial patterns. One simple way is to displace
the holographic plate between exposures. This is the
solution that has been adopted in the present paper.

Figure 5 shows the basic setup used to register the
holograms. Two collimated beams illuminate a model
which is observed from a point located along the nor-
mal to the object surface. An initial exposure of the
unloaded model is made with both illuminating
beams. The fictitious displacement is then introduced
by rotating the holographic plate through a small
angle around an axis parallel to the plane of the
plate. The load is applied and a second exposure is
taken,

In order to derive expressions for the fringe local-
ization and the fringe pitch of the initial pattern, let
us consider that the only hologram registered is the
one corresponding to the fictitious motion.

To compute these quantities, the equations derived
in Ref. T will be applied.

Figure 6 shows the system of coordinates used in
this derivation. AB represents the surface of the ob-
ject. HH is the initial position of the holographic
plate and H'H’ is its final position. Point C is the
center of rotation. Consider an orthogonal base of
unit vectors I 3, k associated with the x, y, z axis,
respectively. "ASsume that the plate is rotated so that

H=—g] (11)

The displacement vector for a point on the holo-
graphic plate is

4=HxR (12)

where R is the vector from the rotation center to
the point P;.

The illuminating beam impinges on point P of the
object. Since the surface of the model is a diffusing
surface, beams emerge from P in all directions. Let
us single out a particular ray which subtends an
angle 4p with respect to the normal n of the plate.
This ray interferes with a reference beam which
makes an angle ¢z with the plate normal. Referring
to eq (3) of Ref. 7, this interference generates fringes
with spatial frequency characterized by the fringe
spacing

A

= (13)
sin 8g — sin 6p

When the plate is rotated and a second exposure is
taken, the specified ray generates a slightly different
fringe spacing at point P,. Let us assume that the
_ hologram is developed, placed back in its rotated
position and reconstructed. The beam emanating from
point P, goes back to P. The point P; has moved to
Py and the beam corresponding to the initial beam
PP,, experiences a change of direction A#p. The point
of intersection of the two beams at P’ defines the
region of maximum contrast of the interference
fringes produced by holographic interferometry.?
This is the localization surface. Beams P.P’ and Py P’
are referred to as homologous rays.® To obtain the
position of P', we need to compute the change of di-
rection Aép.

In order to establish the change in #p when the
plate is rotated through an angle 8, it is necessary to
differentiate eq (13). That is

Afp cos fp — Afp’cos bp = 0 (14)
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where A#p’ is the change in angle with respect to 7:;:‘.
Now

Abp = — B (15)
Substituting the above into eq (14),
CO0S 6r
A = — f ——— (16)
cos dp

The change in 6p referred to the original position of

the plate is iy
Afp = B + Agp’ (17

Using eq (16), the above becomes

(cos #p — cos 6g) (18)
cos gp

Abp =

If D is the distance from the localization surface to
the hologram, we can write

Abp = cos 6p o 19

where !EEJ is the magnitude of the displacement vec-
tor. Using egs (11) and (12)

2 2
Mp:-ﬁ—\/-:c—;-z—ccos dp (20)

where z. is the coordinate of the center of rotation.
The above equation can be written

x 2
1+ (1)
Ze
D

cos ép (21)

Afp =

?

Fig. 6—Localization of holographic fringes for a
rotation of the photographic plate



From eqs (18) and (21), we obtain

Introducing eq (24) in eq (22), one obtains

Ze 1+(

x)z

= (25)

X — Xp

D

(257 |

[ ! — COS 6r 1

Ve T

z N2
z cos? 6p 14
Zc

If D’ is the distance between the object and the holo-
graphic plate

I =

(22)
cos 8p — COS g

Dr
Vi{z —zp)? 4+ (D)2

1f the localization is on the object surface, D = D"

(23)

Ccos fp =

Hence
1
cos 6p = (24)
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Fig. 7—Theoretical and experimental values of the fringe
spacing produced by a rotation of the photographic plate

If one assumes that the distance D is large as com-

pared to the lateral dimensions of the model, that the

direction of observation is predominantly in the di-

rection of the normal to the object, and that during

the reconstruction the entrance pupil of the recon-

structing lens limits the aperture of the beam to a
-z

I P
small angle, then the quantity — can be ne-

r \2
—) can be
Ze

neglected with respect to 1, eq (25) reduces to

glected in eq (25). Furthermore, if (

Ze

= (26)
1 — cosér

With the restriction emanating from the assumptions
used in the derivation, the localization plane depends
only on the coordinate of the rotation center and on
the angle of illumination of the reference beam.

The fringe spacing can be computed by means of
eq (16) of Ref. 7, that is,

A
§p = ————— 27
Afp cos dp
z \2
Using eq (21) and neglecting the quantity (-— )
Zc
with respect to one, we obtain
LD
Bm= (28)
82

Equation (26) has been experimentally checked
and an excellent agreement has been obtained be-
tween observed and computed values.

Fig. 8—Initial patterns for orthogonal

rotations of photographic plate
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Fig. 10—Theoretical and experimental strains along
the horizontal center line of a disk subjected to
diametral compression

Figure 7 shows the experimentally measured fringe
-spacings and the values obtained by means of eq
(28)."A very good agreement is observed between
experimental and theoretical values. The deviation
for 25 min of arc is approximately three percent.

Experimental

Figure 5 shows the setup utilized in the experi-
ments. The holographic plate is supported in a kine-
matic device. This device has controlled displacement
in the direction perpendicular to the plate which
makes it possible to precisely locate the point C.
The plate allows rotations to be made around a ver-
tical or a horizontal axis, Fig. 8. The angle «, between
the normal to the object surface and each illuminat-
ing beam controls the sensitivity that can be ob-
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Fig. 9—In-plane displacement of a
63.5-mm-diam disk subjected to diametral
compression. Each fringe corresponds to a
displacement of 4.5 x 10— mm. (a) U
pattern, (b) V pattern

tained with the system. From eq (5) one can obtain

nA
de= —— (29)
2sina 5 %

where d. is the component of the displacement in
the x-direction. Provided that the diffusing prop-
erties of the surface are such that enough intensity
is obtained to expose the holographic plate, maximum
sensitivity is obtained with grazing incidence.

Figure 9 shows the u and v patterns corresponding
to a disk under diametral compression. Figure 10
shows the ¢, and ¢, strains, plotted together with the
theoretical values. All patterns shown correspond to
illuminations at « = 45 deg.

Conclusions

The problem of separating in-plane components of
displacement in holographic interferometry by opti-
cal means has been solved. This solution is a practical
one and requires only simple devices. The technology
introduced in this paper is a decisive step forward in
the utilization of holographie interferometry as a
practical tool of stress analysis. Further work is
being done to extend the techniques introduced in
this paper to 3-D surfaces. The question of optically
obtaining patterns for the derivatives of the displace-
ment is also under investigation. This work will be
reported in future papers.
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