Extension to Three Dimensions of a Holographic-moiré
Technique to Separate Patterns Corresponding to
Components of Displacement

A combination of dual-beam holographic interferometry and moiré

provides a practical solution to the problem of

the optical separation of displacement components

by J.A. Gilbert, C.A. Sciammarella and S.K. Chawla

ABSTRACT—The holographic-moiré technique to obtain
separate patterns for the Cartesian components of the dis-
placement vector is extended to curved surfaces. An initial
pattern which is often required for the observation of the
displacement fringes is analyzed for this case. Criteria are
established for the localization of this initial pattern tc follow
close to the contour of the object surface. A PVC pipe
subjected to torsion demonstrates the proposed technique
and, when analytical arguments are checked experimentally,
a close correlation is observed.
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Z. = distance between photo-
graphic plate and rotation
center

a = sensitivity angle

B = angle of rotation of
photographic plate
6,6 ' = angular phase change
6y = fringe spacing

60* = angle of twist per unit

length
0r,0r,0, = angles
A = wavelength of laser light
v = Poisson’s ratio
¢(z) = angle of twist
Af,,A0, = incremental angles

Introduction

Holography and holographic interferometry are
beginning to have an impact on today’s technology.
Interest has spread from the research laboratory to
industry, where a practical approach is required to make
any technique readily acceptable. The holographic-moiré
method offers potential in this respect.

A double-beam illumination technique to separate
components of displacement was first suggested by
Butters' and Boone.? It was shown that the displacement
vector of every model point could be projected into a
single plane if the doubly exposed holograms, corres-
ponding to two different illuminations, were optically
superimposed by reconstruction from a common point of
observation.

This approach worked in theory; however, in practice,
the superposition of these two fringe patterns was often
difficult or impossible to observe. The orientation,
gradient and spacing of the two arbitrary fringe systems
did not always lend themselves to the formation of a
moiré. Localization also presented a problem.

To circumvent these difficulties, a rigid-body motion
was imparted to the model to create more fringes in each
component pattern.’* This additional phase change was
common to each component pattern and disappeared in
the final superposition.

The latter solved the problem to some extent; however,
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imparting motion other than the actual displacement to
the model itself was not acceptable from a practical
standpoint. A more desirable solution was presented by
the authors who introduced an additional fringe system
without disturbing the model.* This was accomplished by
rotating the photographic plate between exposures. This
additional degree of freedom made it possible to optically
superimpose holograms, to apply spatial filtering tech-
niques, and to control fringe localization. The method
was shown to be applicable throughout the entire holo-
graphic range and has been applied on interior planes of
transparent bodies.®

All of the experimental studies in the references listed
have applied the holographic-moiré technique to plane
surfaces. This paper explores the possibility of extending
the method to treat curved surfaces. A discussion of the
general equations governing the displacement field is
followed by a derivation for the localization and spacing
of the initial pattern on curved surfaces. This pattern is
often required for the observation of the displacement
fringes. Analytical arguments are checked by considering
a section of a PVC pipe subjected to pure torsion.

Holographic-moiré Theory for Curved Surfaces

Figure 1 shows a point P on a diffusely reflecting
surface whose local normal is ns. The surface is illuminated
by two beams whose angle bisector is n. The propagation
vectors in the direction of each illumination are e, and
e/, respectively. The point P is observed from an observa-
tion point corresponding to the propagation vector e,
which has been aligned with n for convenience only.
When the point P experiences a displacement d between
exposures, two holographic fringe systems are observed
which are characterized by,

0=(en—e)ed (1)
and

)

(ef —e)-d (2

where 6 and ' are the phase changes experienced by the
point P during the displacement.

These two component patterns are simultaneously
observed and, theoretically, are optically superimposed to
form a moiré pattern which represents the net phase
change between,them. That is, the moiré is given by

b-b =(ea-¢e)ed=¢g-d=4d &)

where g is often referred to as a sensitivity vector and d’
is the projected displacement component which is perpen-
dicular to n as shown in Fig. 1. The magnitude of d’ is
directly dependent upon 2c, the angle between the two
illuminating beams. Converting eq (3) from angular to
linear phase,

, _ _n\
& —ZSina

4

where 7 is the fringe order number and X is the wavelength
of the incident light.

For collimated illuminations, the sensitivity vector g
remains constant over the full-field and the displacement
is projected into a single plane. In the case of a flat
surface, when ns coincides with n, 6 is equal to zero and
the displacement d' becomes d; which is referred to as
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normal to the line of sight or ‘in-plane’.

As noted in Ref. 5, localization problems or fringe
characteristics such as spacing, gradient and orientation
often make the optical subtraction, or moiré, or the
component patterns difficult or impossible to observe. To
circumvent this difficulty, the photographic plate is
rotated between exposures. This generates an initial
pattern, representing a fictitious displacement, with high
fringe density. Since the phase change initiated by this
rotation is common to each illumination, eq (4) remains
valid.

In addition to creating component patterns with high
fringe density capable of producing a moiré, the initial
pattern can be used to control the fringe localization of
the component patterns. This may be necessary since the
displacement of the object gives rise to holographic
patterns whose localization depends upon the type of
displacement initiated between exposures and the geometry
of the optical system. Therefore, even if the component
patterns have a sufficient number of fringes to produce
mutual interference, their localization planes may differ
to such an extent that simultaneous reconstruction is
impossible. If, however, the rotation of the photographic
plate produces an initial pattern which is localized on the
object surface and the phase change corresponding to
this rotation is large as compared to that produced by the
deformation, the localization of the resulting component
patterns approaches the object surface. Holographic-moiré
displacement fringes result and when the moiré and the
object are simultaneously reconstructed, the observation-
projection theorem’*® ensures that the interference ob-
served corresponds to the actual displacement of points
on the object surface.

The section which follows analyzes the formation of the
initial pattern on curved surfaces.

Formation of the Initial Pattern on Arbitrary
Three-dimensional Surfaces

Figure 2 shows the system of coordinates used in this
derivation. A cross section of a cylindrical object is shown,

[: hologram

surface
tangent

Fig. 1—Displacement analysis



although the conclusions reached herein are of general
nature and are not restricted to any shape in particular.
HH and H'H' are the initial and final positions of the
holographic plate, respectively. The plate is rotated around
an axis of rotation perpendicular to the plane of the
figure that passes through a point C selected such that, as
determined in Ref. 5

Z. = D (1 — cos 6g) (59

where Z. is the abscissa of the center of rotation, D the
distance of the point of localization to the holographic
plate, and 6y is the angle defining the reference beam.

Localization now occurs at the point M on the surface
of the cylinder and all the homologous rays corresponding
to point M will intersect there. Let us consider a point P
on the surface. An initial exposure allows light corres-
ponding to the propagation vector e,, diffused from point
P, to interfere with the reference beam at point P, on the
nolographic plate. After the plate is rotated, a second
exposure is taken, and the propagation vector e, intersects
the plate at P,. -

Let us assume that the hologram is developed, placed
back in its rotated position and then reconstructed. The
reconstructed beam P,P goes back to the point P. The
point P, which is at P, ' is also reconstructed and the beam
P,'P' intersects P,P at P’. We will show that P’ is
located near P, and that the region of maximum contrast
of the interference fringes produced by the rotation of the
plate is near the surface of the object.

To prove this point we can make use of the equations
derived by Champagne.®

In the present case, these equations can be written

1 1 1 1

sin 05 = sin 6, + (sin 6, — sin f) (@)

The above equations give the image polar coordinates
R; and 6; with respect to the origin of coordinates O, in
terms of the coordinates R, and 6, for the object, R, and
6. for the reconstruction source, and R, and 6z for
reference source. If R; is positive, the image is virtual
while, if R; is negative, the image is real. The plus sign is
associated with the primary wave and the minus sign with
the conjugate wave.

In the case under analysis, we have rotated the plate
around a given axis such that the localization surface has
a point in common with the object. When we reconstruct
the rotated hologram, it is possible to determine the final
position of the reconstructed object by applying eqs (6)
and (7) and by considering the motion of the origin of
coordinates.

From eq (6), in view of the fact that R, = o and
Ry = o, we obtain

Rz=R» (®)
Although the plate has been rotated, and the reference
beam has been kept constant, eq (7) can be applied to

obtain the value of 67 with respect to the rotated plate
normal. We replace in eq (7)

6. =6 — B O]
where § is the angle of rotation of the plate and we obtain
sin 04 = sin (6, — B) + sin 6, — sin O, (10)

where the prime indicates angles referred to the rotated
coordinates, which can be simplified to

sin 0% = sin 6, — B cos 6, (11)

Fig. 2—Localization study

EE - NI T
Rs R; (R,, Ry ) ©
and
z
SEE —— P
DETAIL b.
O
%“ GP
€r
H
P X
|
d
pl‘ (0) N
L) Pz

Experimental Mechanics e 323



since f is a very small angle.
Let us consider point M. For point M, 6, = 0, by
applying eq (11), for small angles.

= — 0 cos Ox (12a)
and adding the angle rotated by the plate normal
= B — B cos bk (12b)
where 63 indicates the value of the angular coordinate
with respect to the nonrotated system of axis. Point O has
moved by the amount
00’ = ZB3 = D(1 — cos br) B (13)

The final position of M can be obtained from the com-
puted coordinate 03 and

Ry = Ry (14)

We can see, Fig. 2, that if we combine the simultaneous
effect of the displacement of the origin of coordinates
given by eq (13) and the effect of the rotation of the
plate given by eq [12(b)], M = M. The homologous ray
defined by

Aby = B(1 — cos bz) (15)

also goes through point M.
If we consider a point P, from eq (11) we can obtain

sin 8% — sin 6, = —f cos 0« (16)

or also

s 6 — 0
2 cos 0";09 sin b; > = —Bcosb: (17)

The above can be written

.08 — 0 B cos 0z
. 2 N 2 cos Oy (18)

if we assume that the difference between the two angles is
small and therefore

P
Or + 62 =0, (19)
2
from eq (18) we obtain
BE = 0 — Darcsin D208 (20)
2 cos 6,

and taking into consideration that we are dealing with a
small angle, we write eq (20),
B cos Ox

L Pt A Sl o i3
# =0 cos O, @l

Finally with respect to the nonrotated coordinate system

e _ cos Or
0r =6, + B [1 T 0p] (22)
or
07 = 0, + AG, (23)
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where

__B
A= cos Bp

[cos 6, — cos Ox] (24)

which agrees with eq (18) of Ref. 6. We can show that the
effect of the rotation of the plate on the reconstructed
object is equivalent to a fictitious rotation of the object
around a rotation axis going through M, the magnitude
of the rotation being B(1 — cos 6). To locate P, position
of the reconstructed point, we take

PP = afB (1 — cos 0z) (25)
the value of
sin g, — PP+ P'Q' + Q'S’ (26)
or
but
PP’ = PPcos 0, = a B(1 — cos 6g) cos 6, (27)
also

P'Q' = PQ (28)
From eq (13) and Fig. 2
Q'S = 00" = B(1 — cos 6z)D (29)

Replacing in eq (26) and taking into consideration that
O'P = OP, we get
(1 — cos Bg) (acos b, + D)

sin f = sin 6, + 8 OP

(30)
but
0OQ =acosb, + D @an
consequently

o e eos 0. 22
sin 67 — sin 6, = B (1 — cos 6x) oP (32)

then
sin 7 — sin §, = B(1 — cos 0x) cos 0, (33)
Following the same steps taken to derive eq (21), we get
0F = 0, + B(1 — cos Or) (34)

then
A8, = 07 — 0» = B(1 — cos bx) (35)
We can see that eqs (24) and (35) do not provide exactly

the same angular coordinate.
Subtracting eq (24) from eq (35) we get

[cos Bx — cos Ok cos 0]
cos 0p

A_(gr - A0P = B (36)

For small values of 6,, that is, for points not far from
the fictitious center of rotation, the difference is practically
zero. Let us consider the point on object farthest away
from the apparent rotation center. If we assume that
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D = L, where L is the maximum dimension of the object
parallel to the plate, in the present case L is the outside
diameter. Assuming that the apparent center of rotation
is located at L/2

L 3L

sin 6, = 2 E = 0.316; cos 0, = 2L - %
\/m7 \/107

(37)

for the point farthest away from the apparent rotation
center. The values of 6, are chosen as large as feasible,
for example if 6, = 60, then

= %4 9D

A8 — Ay = B2 > - B8.026 (38)

If we assume 8 = 10 min of arc, the error in the angular
coordinate is

.0029 x .026

E; . .=
rror ang. coord 0.52359

X 100 = .0144 percent

For all practical*purposes, the effect of the rotation of
the plate is equivalent to an apparent rotation of the
object around a center of rotation located in its surface
neighborhood.

We can look at this problem in the following way. By
rotating the plate around the center of rotation C, we are
rotating the reconstructed image around the point M;
however, in view of the fact that we keep the reference
beam constant, there are certain aberrations of the
reconstructed object, and these aberrations explain the
difference between the results of eqs (24) and (35).

The preceding derivation can be utilized to obtain
important conclusions concerning the localization surfaces
of the fringes produced by rotating the holographic plate.
The phenomenon of localization of holographic fringes
arises from the fact that there are two extended partially
coherent sources that interact and the localization surfaces
are determined by the relative positions of these two
sources. We have shown that to a high degree of approxi-
mation for very small rotations, the relative motion

Fig. 3—Comparison of localization surface
with model surface
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between the two images generated by the rotation of the
plate is equivalent to a rotation of the object around an
axis parallel to the plate and going through a point of the
object. Under such circumstances as shown in Ref. 10,
when an object rotates around an axis normal to the
direction of observation, the resulting fringes are localized
in the neighborhood of the object. To check the above
conclusions, numerous and careful experiments have been
carried out with cylindrical surfaces and with a concave
ellipsoidal surface. To obtain the surface of fringe
localization, the following technique was applied. By
utilizing the conjugate beam, the real images of the object
were reconstructed. A plate with an engraved grating
was utilized to obtain the localization surface by means of
the parallax technique. A simple loupe focused on the
grating provided the means of observing the fringes. The
localization surface was determined by eliminating the
parallax between the grating and the fringes. The plate
was supported in a sliding carriage with an index moving
on a scale divided in mm. Measurements were found to be
repeatable to one mm. In all cases it was found that the
fringes localize in the neighborhood of the surface and
follow the general shape of the surface. Figure 3 illustrates
an example of application. Two half cylinders were
utilized as objects and arranged as shown. Equation (5)
was utilized to compute Z. to localize the fringes in a
tangent plane common to the two surfaces. The apparent
center of rotation was a point midway between the
two cylindrical surfaces. The fringe-localization surface
coincides with the cylindrical surfaces at the tangency
points and then departs from the cylindrical surface as
the slope of the surfaces increases. The same behavior
has been observed in cylindrical surfaces rotated around
the generatrix located in the symmetry axis.

The fringes in the initial pattern are parallel to the axis
of rotation with pitch 6,,, given by,

A

Ow = B(cos 0, — cos 0x)

(39

Note that 6, is independent of the direction of illumination.
Furthermore, when R (radius of the cylinder) is much
smaller than D, the variation in 6, is small and the fringe
spacing approximately only depends upon 6.
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Equation (39) has been experimentally verified for flat
surfaces.® Similar experimental data taken from curved
surfaces show eq (39) to be a universal relationship.

Although this particular discussion has dealt with a
cylindrical surface, similar arguments can be constructed
for other three-dimensional surfaces. In general, the
localization will be close to the surface providing that the
center of rotation is chosen in accordance with eq (5) so
that the fringes are forced to localize at one point of the
surface.

Thus, the technique of generating an initial system of
fringes by means of plate rotation between exposures has
universal application to separate components of
displacement.

Experimental

The model used to demonstrate that the holographic-
moiré method is applicable to curved surfaces is shown in
Fig. 4. The geometrical parameters and the material
properties of the pipe are listed. A Cartesian and a
cylindrical coordinate system are also shown in the figure.
The pipe is rigidly fixed at Z/L equals zero and a torque
M is applied at Z/L equal to one, to produce a state of
pure torsion.

Figure 5 shows the experimental setup along with the
appropriate geometrical parameters used in the study.
Axes corresponding to those shown in Fig. 4 are assigned
to the model. The coordinate of C was chosen in accordance
with eq (5) to force localization of the initial pattern to
occur at the model point (X,Y,Z) = (0,d,/2, L/2) or
(r,0,Z) = (do/2,7/2,L/2). The model was illuminated
with two collimated light beams parallel to the XY plane
of the Cartesian coordinate system. The Y axis formed the
angle bisector of the illuminations and each beam subtended
an angle o with respect to this direction. The region
chosen for this study was 0.4 < Z/L < 0.6. Throughout
this region the displacement was projected parallel to the
XZ plane in the X direction. If we call (U, V,W) the
displacement components corresponding to (X, Y, Z), the
holographic-moiré pattern observed corresponds to U and
is given by eq (4) as,

__n\
2 sin «

(40)

An initial exposure was taken of the unloaded pipe.
The torque was applied to the model and the photographic
plate was rotated through the angle § around an axis
parallel to X, passing through C. The loaded state was
then superimposed on the photographic plate with a
second exposure. When the developed hologram was
reconstructed, the holographic-moiré pattern shown in

Fig. 6—U-displacement component :
(a) unfiltered holographic moiré; (b) theoretical
pattern; (c) filtered holographic moiré
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Fig. 6(a) was observed. This pattern was optically
filtered, Fig. 6(c), to sharpen fringe contrast and to
eliminate the component patterns from the moiré. Note
that, in both patterns, no information was obtained in the
shadow region. That is, for | X/D | = 0.47, the two
illuminations did not overlap. This restriction on the
method imposed by surface geometry can be minimized
at the expense of sensitivity by making the angle 2 « small.

L=16.25 in.= 04128 m MT= 3.48 1b-in.=0.393 N-m

_ N 5
dy=1.91in.= 0.0485 m E=4.00x10 psi=27.58x10%kPa

N dI=I.60in_=0.O4OSm »=0.37
Fig. 4—The model under study
laser
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Y
} 8=4.5arc min.
" IS
o p=45
Z.=6.92 in.=0.176 m
e e Zc D=24.00in=0.610m
1 ‘,,(' c W
N MT= 3.48 Ib-in. = 0.393 N-m
6 2 N
R
r
N
] N

X y: M
model )jT

Fig. 5—The experimental setup




The technique can then be applied to analyze virtually
any surface which could ordinarily be illuminated with a
single beam.

It is desirable to compare this experimental pattern to
its theoretical counterpart. To this end, the transformation
from the cylindrical to the Cartesian coordinate system
shown in Figs. 4 and 5, takes the form,

cos @ — sinf 0 Ui =|U
sin 6 cos 6 0 U, =|V
0 0 1 U, W 41)

where (U, V,W) and (U,,U,,U,) are the displacement
components corresponding to (X,Y,Z) and (r,0,Z),
respectively. )

For pure torsion, the displacement on the outer surface
of the pipe is,

U=U:=0 and U=24z) @

where d, is the outer diameter of the pipe and ¢(Z) is the
angle of twist. From eq (41),

U= —U,sin § = —% ¢(Z) sin 0 43)

The angle of twist per unit length is given by Ref. 11

64M: (1 + »)

RS e SR 0
wlds — dil1 E

(44

where d, is the inner diameter of the pipe, » is the
Poisson’s ratio and E is the Young’s modulus. By definition,

o [ ® experiment \\

— theory

0
-0.5 -0.4 -03 -02 -0 01 02 03 04 05

0
X %
L

Fig. 7—Results along Z/L = 0.50

¢ (Z) = Z 6* (45)
Substituting eq (44) into eq (45) and the result into eq
(43),

_ 32do My (1 + )
wldi - di1E

U= {Zsin6} (46)

Equating eqs (40) and (45) and solving for n,

= 64d, M, (1 + v) sin o 3 (47
n = Nt (do' — '] E {Z sin 6} )

Using A = 5145 x 107® ¢cm and the information included
on Figs. 4 and 5, n can be plotted in the region of interest
as shown in Fig. 6(b). A visual comparison of Figs. 6(a)
and 6(c) with Fig. 6(b) shows a close correlation between
the experimental and theoretical patterns; however,
further study is necessary to verify this observation. To
this end, Fig. 7 compares the experimental and theoretical
data along the section Z/L = 0.5. This confirms that the
two patterns agree to within reasonable experimental
error.

Conclusions

The problem of separating a single component of the
displacement vector with holographic interferometry has
been solved for curved surfaces. The solution is a practical
one and requires only simple devices. Techniques to
obtain derivatives and to suppress speckle noise are
currently under investigation by the authors.
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